
CONTRAlign 2.01
User Manual

(Last modified: August 14, 2008)

1

CONTRAlign 2.01 User Manual 1 of 15

Contents

1 Description 2

2 License (BSD) 3

3 Installation 4
3.1 *nix installation . 4

4 Supported file formats 5
4.1 Input file formats . 5

4.1.1 MFA format . 5
4.2 Output formats . 6

4.2.1 MFA format . 6
4.2.2 CLUSTALW format . 6
4.2.3 Posteriors format . 8

5 Usage 9
5.1 Prediction mode . 9

5.1.1 A single input file . 9
5.1.2 Multiple input files . 10
5.1.3 Optional arguments . 11

5.2 Training mode . 13

6 Citing CONTRAlign 15

CONTRAlign 2.01 User Manual 2 of 15

1 Description

CONTRAlign is a novel algorithm for multiple sequence alignment of protein
and RNA sequences based on conditional log-linear models (CLLMs).

The CONTRAlign program was developed by Chuong Do at Stanford Uni-
versity in collaboration with Samuel Gross and Serafim Batzoglou. The source
code for CONTRAlign is available for download from

http://contra.stanford.edu/contralign/

under the BSD license. The CONTRAlign logo was designed by Marina Sirota.
Any comments or suggestions regarding the program should be sent to

Chuong Do (chuongdo@cs.stanford.edu).

CONTRAlign 2.01 User Manual 3 of 15

2 License (BSD)

Copyright c© 2006, Chuong Do
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright no-
tice, this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

• Neither the name of Stanford University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRAlign 2.01 User Manual 4 of 15

3 Installation

At the moment, CONTRAlign is only available for Unix-based systems (e.g.,
Linux). We will be porting CONTRAlign to other architectures and making
the binaries available.

3.1 *nix installation

To compile CONTRAlign from the source code (for a *nix machine):

1. Download the latest version of the CONTRAlign source code from

http://contra.stanford.edu/contralign/download.html

2. Decompress the archive:

$ tar zxvf contralign_v#_##.tar.gz

where the #’s are replaced with the appropriate version numbers for the
tar.gz you want to install. This will create a subdirectory called contralign
inside of the current directory.

3. Change to the contralign/src subdirectory.

4. Edit the file “Makefile” and select either protein or RNA alignment by
supplying the appropriate definition of the MODEL TYPE variable. For
protein alignment, use

MODEL_TYPE = -DRNA=0

and for RNA alignment, use

MODEL_TYPE = -DRNA=1

5. Compile the program.

$ cd contralign/src
$ make clean
$ make

Now, your installation is complete!

CONTRAlign 2.01 User Manual 5 of 15

4 Supported file formats

In this section, we describe the input and output file formats supported by the
CONTRAlign program.

4.1 Input file formats

CONTRAlign accepts input files in MFA format. The sequences in the MFA
format may either be unaligned sequences (containing no gaps) or pre-aligned
sequences. When performing predictions, any gaps in the input files is ignored;
however, pre-aligned sequences are required when performing training.

4.1.1 MFA format

An MFA (Multi-FASTA) format file consists of a collection of one or more
FASTA-formatted sequences. Each sequence consists of:

1. A single header line beginning with the character ‘>’ followed by a text
description of the sequence. Note that the description must fit on the
same line as the ‘>’ character.

2. One or more lines containing protein or RNA sequence data.

• For protein sequences, each of the lines may contain the letters ‘A’,
‘R’, ‘N’, ‘D’, ‘C’, ‘Q’, ‘E’, ‘G’, ‘H’, ‘I’, ‘L’, ‘K’, ‘M’, ‘F’, ‘P’, ‘S’, ‘T’, ‘W’,
‘Y’, ‘V’, ‘B’, ‘Z’, or ‘X’ in either upper or lower case, and all other
letters are automatically converted to X’s.

• For RNA sequences, each of these lines may contain the letters ‘A’,
‘C’, ‘G’, ‘T’, ‘U’ or ‘N’ in either upper or lower case, any T’s are au-
tomatically converted to U’s, and all other letters are automatically
converted to N’s.

The output of the program will retain the case of the input. All whites-
pace (space, tab, newline) is ignored. X’s and N’s are treated as masked
sequence positions which are ignored during all calculations (i.e., any
scoring terms involving an X or N will be skipped). With the exception
of gaps (see below), other non-whitespace characters are not permitted.

3. (Optional) In order to specify a pre-existing alignment, gap characters
may be included in the sequence data above. In particular, valid gap
characters include ‘.’ and ‘-’. An MFA file specifying a gapped multiple
sequence alignment should have the same total number of characters of
sequence data (i.e., letters plus gaps) for each sequence.

For example, the following is a valid MFA file containing a single RNA
sequence:

CONTRAlign 2.01 User Manual 6 of 15

>sequence
acggagaGUGUUGAU
CUGUGUGUUACUACU
caucuguaguucuag
uugua

Similarly, the following is a valid MFA file with two RNA sequencess:

>seq1
acguuggcu
>seq2
gCGUCu

Also, the following is a valid MFA file with three-prealigned protein se-
quences:

>seq1
RNDCQEg
>seq2
RN--Qeg
>seq3
rnD-QEg

But the following is not a valid MFA file (starts with the wrong header
character):

sequence
ATGACGGT

4.2 Output formats

The results of a CONTRAlign alignment prediction are given in either MFA,
CLUSTALW, or posteriors format. We describe each of these in detail.

4.2.1 MFA format

The MFA output format is identical to the MFA input format (see Section 4.1.1).
The sequences in the output MFA file will always be given in the same order
as in the input.

4.2.2 CLUSTALW format

The CLUSTALW output format for CONTRAlign is meant to be largely com-
patible with the output typically given by the CLUSTALW series of alignment
programs. The output file consists of

1. A single line with the header, “CLUSTALW (CONTRAlign) multiple se-
quence alignment” followed by a blank line.

CONTRAlign 2.01 User Manual 7 of 15

2. A list of multiple alignment blocks and annotation strings. Each block,
except the last, is followed by a blank line. Each block consists of

(a) One line for each sequence in the alignment, containing
• the name of the sequence
• a section of aligned sequence data (containing ‘-’ characters for

gaps)
(b) An annotation string beneath the aligned sequence data, using the

following annotation characters:
• For protein alignments

– ‘*’ denotes a perfectly conserved amino acid residue
– ‘:’ denotes columns where all characters belong to one of the

following sets:
∗ {S, T, A}
∗ {N, E, Q, K}
∗ {N, H, Q, K}
∗ {N, D, E, Q}
∗ {Q, H, R, K}
∗ {M, I, L, V}
∗ {M, I, L, F}
∗ {H, Y}
∗ {F, Y, W}

– ’.’ denote columns where all characters belong to one of the
following sets:
∗ {C, S, A}
∗ {A, T, V}
∗ {S, A, G}
∗ {S, T, N, K}
∗ {S, T, P, A}
∗ {S, G, N, D}
∗ {S, N, D, E, Q, K}
∗ {N, D, E, Q, H, K}
∗ {N, E, H, Q, R, K}
∗ {F, V, L, I, M}
∗ {H, F, Y}

• For RNA alignments
– ‘*’ denotes a perfectly conserved amino acid residue

An example of a CLUSTALW format output alingment is shown below

CLUSTALW (CONTRAlign) multiple sequence alignment

seq1 RNDCRDCAQ
seq2 ---RNDCAQ

.****

CONTRAlign 2.01 User Manual 8 of 15

4.2.3 Posteriors format

The posteriors output format is applicable only when the requested output
of CONTRAlign consists of pairwise sequence comparisons. The posteriors
output format is distinct from the MFA and CLUSTALW formats in that in
addition to an alignment, a posteriors output file also provides a sparse rep-
resentation of the alignment match posterior probabilities for letters from the
given input sequence pair.

For a pair of sequences x and y where the length of the first sequence x is
Lx, the posteriors output format consists of:

1. A section giving an MFA-formatted alignment prediction (see Section 4.1.1).
This prediction is computed using the maximum expected accuracy (MEA)
decoding algorithm.

2. A single line containing the character ‘#’ which serves as a separator char-
acter.

3. A section containing Lx lines, where the ith line contains

(a) The integer i.

(b) A space-separated list of base-pairing probabilities of the form j:pij ,
where pij is the alignment match probability for xi and yj .

For example, the following is a posteriors format output:

>seq1
RNDCRDCAQ
>seq2
---RNDCAQ
#
1 1:0.19849
2 2:0.188896
3 3:0.177315
4 1:0.69297 4:0.161425
5 2:0.710275 5:0.138814
6 3:0.744155 6:0.132637
7 4:0.78179
8 5:0.79337
9 6:0.796858

In the above output, the first C in sequence 1 is predicted to have a 69.297%
chance of aligning with the R in sequence 2, and a 16.1425% chance of aligning
with the C in sequence 2.

CONTRAlign 2.01 User Manual 9 of 15

5 Usage

CONTRAlign has two modes of operation: prediction mode and training mode.

• In “prediction” mode, CONTRAlign aligns a set of sequences using either
the default parameters or a CONTRAlign-format parameter file.

• In “training” mode, CONTRAlign learns new parameters from training
data consisting of pre-aligned sequences.

Most users of this software will likely only ever need to use CONTRAlign’s
prediction functionality. The optimization procedures used in the training
algorithm are fairly computationally expensive; for this purpose, the CON-
TRAlign program is designed to support automatic training in a parallel com-
puting environment via MPI (Message Passing Interface).

5.1 Prediction mode

In prediction mode, CONTRAlign computes multiple alignments for given in-
put sequence sets, and prints the result to either the console or output files. The
basic syntax for running CONTRAlign in prediction mode is

$./contralign predict [OPTIONS] INFILE(s)

5.1.1 A single input file

For aligning a set of sequences, CONTRAlign generates MFA output (see Sec-
tion 4.1.1) to the console (i.e., stdout) by default.

For example, suppose the file “seq.mfa” contains a set of sequence to be
folded. Then the command

$./contralign predict seq.mfa

will fold the sequence and display the results to the console in MFA format.
CONTRAlign can also write MFA, CLUSTALW, or posteriors formatted

output to an output file. To write MFA output to a file,

$./contralign predict seq.mfa --mfa out.mfa

To write CLUSTALW output to a file,

$./contralign predict seq.mfa --clustalw out.clustalw

To write all posterior pairing probabilities greater than 0.001 to a file,

$./contralign predict seq.mfa --posteriors \
0.001 out.posteriors

CONTRAlign 2.01 User Manual 10 of 15

Note that here, the backslash character is used to denote that a command-line is
broken over several lines; it is not necessary if you type everything on a single
line.

Finally, it is also possible to obtain multiple different types of output simul-
taneously. For example, the command

$./contralign predict seq.mfa --mfa \
seq.mfa --clustalw seq.clustalw --posteriors \
0.001 out.posteriors

will generate three different output files simultaneously.

5.1.2 Multiple input files

For multiple input files, CONTRAlign generates MFA output (see Section 4.1.1)
to the console by default. The output is presented in the order of the input
files on the command-line. Using console output is not allowed when MPI is
enabled, or when certain other options are selected; in general, we recommend
the usage of explicitly specified output files or subdirectories when dealing
with multiple input files (see below).

CONTRAlign can also write MFA, CLUSTALW, or posteriors formatted
output to several output files. In particular, CONTRAlign creates a subdirec-
tory (whose name is specified by the user) in which to store the results, and
writes each prediction to a file in that subdirectory of the same name as the
original file being processed.

For example, suppose that the files “seq1.mfa” and “seq2.mfa” each contain
sets of sequences to be independently aligned. Then the command

$./contralign predict seq1.mfa seq2.mfa \
--mfa output

will create a subdirectory called output and will place the results in the files
output/seq1.mfa and output/seq2.mfa.

Alternatively,

$./contralign predict seq1.mfa seq2.mfa \
--clustalw output

and

$./contralign predict seq1.mfa seq2.mfa \
--posteriors 0.001 output

generate CLUSTALW and posteriors formatted outputs instead.
Observe that if multiple input files have the same base name, then over-

writing of output may occur. For example, if the input files list contains two
different files called seq/input and input, the output subdirectory will con-
tain only a single file called input.

You may also generate multiple types of output simultaneously, as before.
Remember, however, to use different output subdirectory names for each. The
command

CONTRAlign 2.01 User Manual 11 of 15

$./contralign predict seq1.mfa seq2.mfa --mfa \
mfa_output --clustalw clustalw_output \
--posteriors 0.001 posteriors_output

generates three different output subdirectories (mfa output, clustalw output,
and posteriors output) each containing two files (seq1.mfa, seq2.mfa).

Finally, in some cases, you may wish to align a group of sequences from
multiple MFA files. In this case, you can supply the --conflate option which
tells CONTRAlign to treat the input files collectively as a single file (i.e., the
concatenation of all input files) with the same name as the first specified file.
For example, the command

$./contralign predict seq1.mfa seq2.mfa --conflate

will return a single MFA alignment consisting of all the sequences in both of
the supplied input files.

5.1.3 Optional arguments

CONTRAlign accepts a number of optional arguments, which alter the default
behavior of the program. To use any of these options, simply pass the option
to the CONTRAlign program on the command line. For example,

$./contralign predict seq.mfa --viterbi \
--noncomplementary

The optional arguments include:

--gamma γ

This option sets the sensitivity/specificity tradeoff parameter for the max-
imum expected accuracy decoding algorithm. In particular, consider a
scoring system in which each nucleotide belonging to a correct match
gets a score of γ, and each nucleotide correctly gapped gets a score of
1. Then, CONTRAlign finds the alignment of the input sequences with
maximum expected accuracy with respect to this scoring system.

Intuitively,

• If γ > 1, the parsing algorithm emphasizes sensitivity.

• If 0 ≤ γ ≤ 1, the parsing algorithm emphasizes specificity.

In addition, if the user specifies any value of γ < 0, then CONTRAlign
tries trade-off parameters of 2k for k ∈ {−5,−4, . . . , 10}, and generates
one output file for each trade-off parameter. Note that this must be used
in conjunction with either --mfa, --clustalw, or --posteriors in
order to allow for writing to output files.

For example, the command

CONTRAlign 2.01 User Manual 12 of 15

$./contralign predict seq.mfa --gamma 100000

runs the maximum expected accuracy placing almost all emphasis on
sensitivity (predict correct matches).

The naming convention used by CONTRAlign when γ < 0 follows some-
what different conventions from normal. Running

$./contralign predict seq.mfa --gamma -1 \
--clustalw output

will create the files

output/output.gamma=0.031250
output/output.gamma=0.062500
...
output/output.gamma=1024.000000

For multiple input files,

$./contralign predict seq1.mfa seq2.mfa \
--gamma -1 --clustalw output

will generate

output/output.gamma=0.031250/seq1.mfa
output/output.gamma=0.031250/seq2.mfa
...
output/output.gamma=1024.000000/seq1.mfa
output/output.gamma=1024.000000/seq2.mfa.

Like before, multiple types of output (MFA, CLUSTALW, posteriors) may
be requested simultaneously.

--viterbi

This option uses the Viterbi algorithm to compute alignments rather than
the maximum expected accuracy (posterior decoding) algorithm. The
alignments generated by the Viterbi option tend to be of slightly lower ac-
curacy than posterior decoding, so this option is not enabled by default.
Also, this option is only available when performing pairwise alignments.

--pairwise

This option instructs CONTRAlign to perform all pairwise alignments
rather than multiple alignments.

CONTRAlign 2.01 User Manual 13 of 15

--annealing
This option replaces the standard progressive alignment dynamic pro-
gramming algorithm for alignment with an implementation of the se-
quence annealing algorithm described in:

Schwartz, A.S., and Pachter, L. (2007) Multiple alignment by
sequence annealing. Bioinformatics, 23(2): e24-e29.

--pc iters NUM
This option sets the number of iterations of probabilistic consistency to
use before running the multiple alignment algorithm.

--sc iters NUM
This option sets the number of iterations of spectral consistency to use
before running the multiple alignment algorithm.

--params PARAMSFILE

This option uses a trained CONTRAlign parameter file instead of the de-
fault program parameters. The format of the parameter file should be the
same as the contralign.params.protein file in the CONTRAlign
source code; each line contains a single parameter name and a parameter
value.

--version

Display the program version number.

--verbose

Show detailed console output.

--partition

Compute the log partition function for the input sequence.

5.2 Training mode

In training mode, CONTRAlign infers a parameter set using RNA sequences
with known (or partially known) secondary structures in CLUSTALW format.
By default, CONTRAlign uses the L-BFGS algorithm for optimization.

For example, suppose input/*.clustalw refers to a collection of 100 files
which represent sequences with known structures. Calling

$./contralign train input/*.clustalw

instructs CONTRAlign to learn parameters for predict all structures in

input/*.clustalw

CONTRAlign 2.01 User Manual 14 of 15

without using any regularization. The learned parameters after each iteration
of the optimization algorithm are stored in

optimize.params.iter1
optimize.params.iter2
...

in the current directory. The final parameters are stored in

optimize.params.final

and a log file describing the optimization is stored in

optimize.log

In general, running CONTRAlign without regularization is almost always a bad idea
because of overfitting. There are currently two ways to use regularization that
are supported in the CONTRAlign program:

1. Regularization may be manually specified. The current build of CON-
TRAlign uses 15 regularization hyperparameters, each of which is used
for some subset of the parameters. To specify a single value shared be-
tween all of the regularization hyperparameters manually, one can use
the --regularize flag. For example,

$./contralign train --regularize 1 \
input/*.clustalw

uses a regularization constant of 1 for each hyperparameter. In general,
we recommend that you do not perform training yourself unless you
know what you are doing; also do not hesitate to ask us.

2. The recommended usage is to use CONTRAlign’s holdout cross-validation
procedure to automatically select regularization constants. To reserve a
fraction p of the training data as a holdout set, run CONTRAlign with
the --holdout p flag.

For example, to reserve 1/4th of the training set for holdout cross-validation,
use

$./contralign train --holdout 0.25 \
input/*.clustalw

Note that the --holdout and --regularize flags should not be used
simultaneously.

CONTRAlign 2.01 User Manual 15 of 15

6 Citing CONTRAlign

If you use CONTRAlign in your work, please cite:

Do, C.B., Gross, S.S., and Batzoglou, S. (2006) CONTRAlign: Dis-
criminative training for protein sequence alignment. In Proceedings
of the 10th Annual International Conference on Computational Molecular
Biology (RECOMB), 160-174.

Other relevant references include:

Do, C.B., Foo, C.-S., Ng, A.Y. (2007) Efficient multiple hyperparame-
ter learning for log-linear models. In Advances in Neural Information
Processing Systems 20.

